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The determinant function has been studied for more than 175 years. 

Formerly proposed as a tool for solving simultaneous linear equations, 

the determinant is now recognized as useless for this practical chore. On 

the other hand, the determinant has many useful properties. It appears 

in exterior algebra; also as a mapping function from 3, to 5 (where $J 

is any field). Interesting inequalities involving the determinant function 

exist. The same function can be used to locate proper values of matrices, 

i.e., to define regions of exclusion. 

Since its definition was published, very little in the way of applications 

of the Dieudonne determinant has appeared. In this article we derive 

certain properties of the (ordinary) determinant function, and extend 

these properties to the Dieudonne determinant, a function defined on 

matrices over a skew field (division ring). The properties are extensive 

enough to permit new applications. In particular we show how to define 

the permanent function of a matrix over a division ring. On the other 

hand, the range of applications given here could undoubtedly be extended 

still further. 

Some of the applications we adduce lead to new results. Others are 

recoveries of results that may perhaps have already been discovered in 

an even more general context. Nevertheless the interconnections ex- 

pounded will be instructive and, we hope, of interest. 

* To Alexandre Ostrowski on his 75th birthday, 
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1. PRELIMINARIES 

In our view, all properties of the determinant function stem from 

Lemma 1.2, which states that a matrix A E 3, can be factored into a 

product of elementary matrices. 

1.1. DEHNITIOK. An elementary matrix is a matrix 

TLi = I + eii or S,,, = I + (a - l)ei,. 

Note that every matrix T, is invertible, and that S,,j is invertible if a 

is invertible. 

The main stream of our discussion concerns the ring of n-dimensional 

matrices over a skew field 3. 

1.2. LEMMA. Every matrix A E s,, is exjvessible as a product of 

elementary matrices. 

The product is of course not uniquely determined; but we shall use 

Lemma 1.2 to define the determinant of a matrix. 

1.3. DEFINITION. A determinant function over the matrices of & 

is a function “det” from & into 3 (see below) with one of the following 

properties : 

1.4.’ 
I 

for every invertible 

1.5. I 

det (AB) = (det A)(det B) = (det B)(det A) 

I 

Al B ‘3~ 

for every A, R E &, 

\I’e recognize that the constant functions 1, 0 satisfy these definitions; 

these are trivial. The function that is 1 on the invertible matrices and 

0 on the singular matrices satisfies property 1.5. It has been discovered 

many times, but we consider it also trivial. For the existence of a non- 

trivial determinant function, it is necessary that 5 have more than two 

elements. 

We first show that properties 1.4 and 1.5 are essentially equivalent. 

1.6. THEOREM. Let det be a nontrivial determinant function satisfying 

firofierty 1.5. Then det is identically 0 for any singular matrix. 

I.ineur Algdwa und Ifs Applicatiolzs 1, 511-536 (1968) 
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Proof. If 0 is the zero matrix and A is a matrix such that det A f 0, 1, 

then det 0 = (det A)(det 0) because 0 = A * 0. Therefore det 0 = 0. 

Next, note that det I = 1 since IA = A. Further, the determinant of 

a permutation matrix P is not 0, since P” = I for some m. It is now 

easy to see that det diag[l, 1, . . . , 1, 0, 0, . . . , 0] must be 0 if the matrix 

is singular; this follows from the fact that 0 is expressible as the product 

of this matrix by some of its permutes. Now, if B is singular, B can be 

written as a product CDG, where D is the above matrix. Hence, det B = 0. 

1Ve are justified in considering only property 1.4 henceforth, that is, 

only the mappings from the general linear group GI,[n, 51 into 5. 

2. THE DETERMINANT OF A 1 X 1 MATRIX 

We discuss the possible existence of a nontrivial determinant function 

for 1 x 1 matrices, the simplest case. First we note that det a is never 

0; hence, det 1 = 1 because det(1 * a) = (det l)(det a). Further, since 

det a det(a-l) = det 1, it follows that (det a)-l = det(a-l) and finally 

from (det a)(det b) = (det b)(det a) it follows that the determinant of any 

commutator ubu-lb-l is 1. Let K* be the multiplicative group of 3; 

then det is a mapping from K* into the quotient group K*/K*’ of K* 

with respect to its commutator subgroup. The kernel of this mapping 

is clearly the commutator subgroup K*‘, and the mapping is completely 

defined. As we shall see later, this conclusion, derived in the 1 x 1 case, 

can be generalized to GL[n, S]. Note that K*/K*’ ‘v C*, the center of 

K*. The determinant of an n x n matrix will be defined as an element 

of K*/K*‘, i.e., as a coset of K*’ in K*. It will not always be possible 

to replace the entire coset by a single representative. When K* is com- 

mutative, there is hardly any distinction, since every coset has only one 

member. 

Let us digress to consider how a determinant function must be defined 

over 1 x 1 matrices when the coefficient domain is a ring but not necessarily 

a skew field. First, if the ring has no zero divisors, e.g., if the ring is a 

ring of polynomials over a division ring, it can be imbedded in a quotient 

field [24]. A self-consistent determinant function is thus immediately 

defined. In the general case when zero divisors are present, it may be 
useful to define the determinant function only after reducing the ring 

modulo its radical (see [17, p. 2211). However, this device is not always 

effective. 

Linear Algebra and Its Applications 1, 511-536 (1968) 
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Remark. The matrix equation 

[; J1] E ;j = [: .“, P-J 

shows the desirability of Definitions 1.4 and 1.5. The product a/kl~-’ 

should probably be indistinguishable from 1; i.e., det Rdet il = det Adet R. 

3.1. L~nrm. I/ n > 2, the matri.r T,, is a comnairtator (if i # jJ. 

Proof. T,,7‘,,7‘,;‘T,i’ = 7‘,? (if i # k f 7). 

3.2. LEMMA. I/ t, t - 1 aye both iwertible, the matrix T12 is a cow 

mutator. 

In particular 1’,, is a commutator whenever 2 is in\.crtible (t = - 1). 

3.3. LEMMA. The matrix 

Proof. 

is a jwodilct o/ comm~~ttators (a # 0). 

3.4. Proof. If a, a - 1 are both invertible, then each factor in the 

product is a commutator: 
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3.5 Remark. If 5 has two elements, n = 2, the matrices 7’r,, T,, are 

not products of commutators. For the six nonsingular matrices of & are 

I, A = T,,, B = I’,,, BA = ABAB, AB = BAB*4, ABA = BAB, and 

the commutator subgroup is {I, BA, A B}. But since 3 has only two 

elements, no nontrivial determinant function can exist. 

3.G. DEFINITIOK. Any matrix diag [a, 1, 1, . . . , 11, a # 0, is called 

a determining matrix. 

3.7. THEOREM. Every invertible matrix can be written as the ;broduct 

oj a determining matrix (first factor) times a product of commutators (second 

factor). 

l’roof. The proof bases itself on Lemmas 1.2, 3.1, 3.2, 3.3. Write 

the given matrix as a product of elementary matrices, and insert extra 

factors, e.g., 

where T, U are arbitrary products of commutators. Since the commutator 

subgroup CGL[n, 51 is invariant, the theorem follows. 

For a nontrivial map we easily derive det I = 1, (det A)-l = det A-l, 

and the determinant of a commutator must be 1. Hence from property 

1.5, the of any must be determinant of deter- 

mining We define map of [a, 1, . . l] as mapping 

from onto K*/K*’ by abuse language, onto which was 

earlier (with K*‘). This is the function 

defined Dieudonnc. In 5 is it coincides the 

usual function. 

In opinion, the discussion is direct than It was 

in essentially same form Taussky and in 1963, 

my lectures 1955, and earlier by 

Some properties this definition to be 

3.8. THEOREM. The “determinant of the determining matrix” is a 

determinant @action satisfying property 1.5. 

Proof. Suppose 

b 0 
B=O p. 

[ 1 
Linear .4lgebva mzd Ifs Applications 1, 511-536 (1968) 
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has determinant det(ab) = (det A)(det B). (We have used detrab to 
mean the mapping from K* onto C*, and det,$il to mean the mapping 

from GL[n, 51 onto C*.) 

3.9. THEOREM. The deternainalzt of a matrix is the same as the 

determinant of its transeose. 

Proof. The factorization of a matrix into a product of elementar! 

matrices establishes this. Note that the transpose of a product is the 

product of the transposes in reverse order. 

3.10. THEOREM. If one row of a matrix is multiplied by the constant 

a, the determinant is multifilied b>l this same co?zstalzt. 

Proof. The matrix transformation in question amounts to multiplica- 

tion of the matrix by an elementary matrix I + (a -- l)ezc, the determinant 

of which is a. 

3.11. THEOREM. If two rows of a matrix aye interchanged and after- 

alard one of these rows is multiplied by - 1, the determinant is wwltered. 

ProoJ. The matrix transformation is brought about by premultiplying 

by the matrix 

Each of the three displayed factors is a commutator. 

3.12. COROLLARY. Interchange of two rows of a matrix changes the 

determinant to its negative. 

Here - det, a means det,( --- a). Over quaternions, det(-- a) and 

det a are the same. 

Proof. Theorems 3.10 and 3.11. 

3.13. THEOREM. If one YOW of a matrix is augmented by a mtiltiple 

of another YOW, the determilzant is unchanged. 

Linens 4lgebra and Its Applicatiom 1, .‘,I1 -- 336 (196X) 
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Proof. The transformation amounts to premultiplication by 

IO. 
3.14. LEMMA. Sup$ose A = 0 B , t.e., A is obtained from B h_s 

/ 1 
bordering with an identity matrix. Then det A = det B. 

3.15. DEFINITION. The matrix A = [a,?] is a direct sum: A = 

B @ C, if the indices (1, . . . , n> can be partitioned into disjoint sets 

R, S such that ati = 0 if i E R and j E S and also a,, = 0 if i E R and j E S. 
B 0 

The matrix B is B = [ajj]i,jEK; C = [a,j],,jc,,. ‘4 w o C . 
[ 1 

3.16. THEOREM. det B @ C = (det B)(det C)(+ l), where the factor 

& 1 indicates the sip-a of the permutation {l, . , n} - {R, S}. 

Proof. Note that B @ C = [B @ I] [I @ C], where the symbol @ 

denotes direct sum. Express [B @ I] and [I @ C] as products of n x n 

elementary matrices / ~. 

3.17. DEFINITION. The matrix A = [aij] is reducible if the indices 

{l,..., n} can be partitioned into disjoint sets R, S such that aLj 0 

in and 

3.18. THEOREM. Let A be reducible; let B, C be defined as in Lemma 

3.14. Then det A = (det B)(det C)( + 1). 

Proof. One first shows that A = D[B @ C], where D is a product 

of commutators; Theorem 3.18 then follows from Definition 3.17 and 

Theorem 3.8. 

4. COMBINATORIAL PROPERTIES OF THE DETERMINANT FUNCTION 

In the preceding section the determinant function was defined; certain 

properties were shown to be immediate consequences of the definition. 

When properly rephrased, any known property of the determinant func- 

/.inrar .4lgebra wzd Its ~4~~licatiom 1, 511-536 (1968) 



tion over commutati\ve domains can be carried over to the noncommutati\xx 

case. In this section we study chicfl!- the generalizations of multilinearit!.. 

It has to be remembered that the determinant of the 1 x 1 matrix 

:a~ is not a, but is the cosrt of K* modulo the commutator group K*’ 

to which a belongs. \Vhen only multiplications are being performed, 

each coset may be represented b!, an element of C*, since multiplication 

of cosets amounts to multiplication of their rrpresentati\-es. This sim- 

plified representation does not work if addition is involved as well as 

multiplication. 

If one overlooks this fact, one ox,erlooks at the same time the possibilit!- 

of expanding the determinant of the matrix A = 
a b 

i I 
c d- (a f 0). Hecauw 

of the relation 

noticed by maii~~ c3rljr writers, it must be so that 

‘l‘he relation bet\j.een this number and the number ad bc is the following. 

rid IFCD = d&&i, 

This is not an artificiality. \C’e must think not det A == ud --- Oc, 

but rather det -4 7:: a. det d b . det c; and dct d, det c are determined 

only up to a factor from the commutator group K*‘. (In the commutative 

case, K*’ is trivial.) Before establishing the noncommutative form of 

the multilinearity property, we interpose a short digression. 

I.inrov .4zgrtm ctrzci Ifs .-1pfl2cctrion,s 1, 31 I --5x (1968) 
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4.2. LEMMA. The follorkg properties of the determinant function are 

equivalent.. 

(a) Whenever the first row of matrix A is the sum of two rows rl + rz9 

then det A = det A, + det A,, where Ai is the same as A except in the 

first row, where ri replaces rl + r2. 

(b) Whenever the first column o/ A is the vector [l, - 1, 0, . . , O]*, 

the determinant of A can be found by expanding by minors of the first column. 

(c) The determinant of every matrix can be found by expanding by 

minors. 

Proof. To show parts (a) and (b) are equivalent, consider the bordered 

matrix 

L! -1 0 0 1 . . rl- 7a . . . . 1 
and expand it in two ways: first, by minors of the first column; second, 

by adding the first row to the second row and using Theorem 3.18. 

To show that parts (a) and (c) are equivalent, note that part (c) 

amounts to applying (a) inductively, by considering the pivot row as 

the sum of n rows, viz, 

4.3. THEOREM. The determinant of an n x n matrix cam be found 

by expanding by minors of any one row or column. 

Proof. The inductive proof assumes that parts (a) and (c) of Lemma 

4.2 are valid for matrices of order less than n, and also that Theorem 4.3 

is valid for any matrix having k - 1 or fewer nonzero elements in the 

pivot row. The induction must then be carried to an n x n matrix with 

I.ineur .4Zgebvcr trnd Its .-1~@icatiom 1, 511.-536 (1968) 



exactly k nonzero elements in one row. To make the exposition readable, 

we simply expound the proof for the 3 x 3 case: 

4.4. 
-I 

a22 '23 - '21'11 '13 
det A = alI det 

1 
'32 a33 - a31a1l al3 I 

- a,,det 

L 0 0 1 I L 
-I 

a31 '32' '33 ~ a3+11 al3 

Since det A = det A,, the induction hypothesis implies that 

1 
a21 '23 - '21"11 a13 

-1 
a31 a33 - a31a11 a13 

The usual theorems are valid for matrices of lower order by the induc- 

tion hypothesis. Thus 

I 

a22 '23 ~~ aZ141 al3 

I 

a22 '23 
a,, det 

-1 
= all det 

'32 a33 ~ a3p11 aI3 '32 a33 I 

f al1 det(ai-ii 
a21 a22 

a13) det 
a31 '32 

where WC used 

I 

a22 a21a11 a13 a22 a21 

'32 a31aua13 '32 a31 

The proof of Theorem 4.3 may now be completed by treating the last 

term of the equation 4.4 in similar fashion. The proof for matrices of 

arbitrary dimension is the same, with the necessary tedious generalit!. 

of notation. 

Remark. Theorem 4.3, stated in the form (a) of Lemma 4.2, was 

discovered bv \1-. Givens L 12 i. His proof seems not to have been published. 

Remark. It is now clear that assertions (a), (b), (c) under Lemma 

4.2 are not only equivalent, but are in fact universally valid. 
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4.5. THEOREM (Laplace expansion), The generalized expansion 

is valid, 

Here, the notation A (4 i i) denotes the minor based on rows . . . and 

columns ***; the set {l,...,n)\(k,***h,} is the set {l,..., ti} with 

the element k,, . . . , k, deleted; and the summation is extended over 

all subsets {k,, . . ., kr) of r indices from the set {I, . . . , PZ). The proof 

is again by induction. 

4.6. THEOREM (Cramer’s rule). The solution of the linear system 

Ax = b satisfies the usual rules; instead of x = A-lb, however, we must 

write (det xi) = det(A-lb),. Conditions for solvability, number of linearl~~ 

independent solutions, etc. remain the usual ones, it being understood that 

“solution” meaiis “solution coset.” 

Remark. In a field with valuation, the relation x = A-lb can almost 

be achieved; in fact /lx, Ii = / ] (A-lb),) 1. The value of a commutator is 1. 

;5. COMPOUND MATRICES 

The compound of a matrix can be defined in the usual way. The 

elements of the compound are themselves cosets of K*‘. Note that 

a matrix and its first compound are not identical; for matrices over a 

commutative field, there is no need to distinguish between them. 

5.1. DEFINITION. Let A = [azj] be an PC x wz matrix. The rth 

compound A(r) of A (1 < Y < min(n, m)) is the 
n m 

0 i) 
X matrix, the 

Y Y 

elements of which are the determinants of the various Y x r minor matrices 

of A, written in lexicographic order by rows and columns. 

5.2. THEOREM. If A, B aye any matrices (for which AB is defined), 

thelz A “lBc’) = (A B)“). 

The assertion is less precise in the noncommutative case than in the 

commutative case; the idea is that a purported relation such as cd + 

Linear Algebra and Its Appliccctions 1, .ill-5536 (1968) 
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pj $ . . . = gk holds if each letter is a suitable representative of its cosct 

In the commutative case, each cost+ has only one representativcl. 

Prooj. Hy Lemma 1.2, it is sufficient to establish Theorem 5.2 in 

the special case that H is an elementary matrix. For if B is merely the 

product BIB, of two elementary matrices, then 

(.A B)“’ .: (&)“‘B,“, = &“B,“‘K,“’ = /@(B,B,)“) = A”‘#“. 

The formal inductive proof assumes Theorem 5.2 to be valid whenever 

H is the product of i ~~~ 1 elementarJ7 matrices, and on the basis of this 

assumption, establishes the thc,orem when 23 is the product of i elementaq- 

matrices. 

Theorem 5.2 is obvious when H is an clementaq- matrix 7‘ij; see 

property (a) under Lemma 4.2. If K is S,,,, Theorem 5.2 is also obvious; 

see Theorem 3.10. 

Remark. Tile above proof seems to be different from the proofs 

usually given, e\.en in the commutative case. 

5.8. LEMMA. Set A = T,,, i -# j. Then det .4 = 1, det .4”’ = 1. 

Proof. From the definition of A”) it is obvious that A”’ is upper 

triangular and has diagonal entries all equal to 1. 

5.4. COROLLARY. Set A = I t- ae,i, i f j. Then det A = 1, det A”’ = 1. 

The above proof applies. 

6.5. LEXM.A. Let .4 = S+ the diagonal matrix of order n .with a 

ix the (i, i) position. Thex dct A(” == a, raised to pomer 

Proof. .A11 nonprincipal minors of A have a row (or a column) of 

zeros. Every principal minor is either the identity matrix, or else has 

a as one diagonal entry. The number of the latter is 

5.6. THEOREM. det A(‘) - (det A), raised to power 
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Proof. Lemma 1.2, Theorem 5.2, Lemmas 5.3, 5.5. 

Sylvester’s determinant theorem. A theorem of Sylvester gives the 

values of certain principal minors of A”‘: we write A = rajjlln; 

~1, = det [aijjI”, where s is fixed, 1 < s < Y. 

5.7. THEOREM. Let B be tlze matrix, the elements of which consist 

of the determinants of all those r x Y minors of A that involve the first s 

rows, the first s columns, (and Y - s other rows, r - s other columns); 

elements of B are arranged according to the lexicografihic order of these 

minors. Then det B = (det A)“(det AJ4, where 

Ai=A[::::;), +:;I). 

The proof is essentially that in [22]. 

6. HYBRID THEOREMS 

One of the early hybrid theorems is due to Ingraham. The theorem 

concerns an ny X fizy matrix A = [aijll”’ that is partitioned into blocks 

IA,X of equal size: AI,” = [au], (p - l)r < i < pr, (V - 1)r < i < vr. 

Ingraham proved the theorem under the double assumption that all 

submatrices A,,, are commutative, and that the field of coefficients is 

also commutative. See [IS]. Theorem 6.1 includes Ingraham’s theorem 

as a special case. 

6.1. THEOREM. Let A = [aijlln* be partitioned into n2 equally sized 

(r x Y) blocks [A,,],“. Th.en det,, A = det,(det,b A). 

The theorem says, for example, that 

= det,(A,,A,, - ArsAsr); 

but if A,, are not mutually commutative, this must be modified to read 

det,, A = det,(A,,A,, -- A,,A,,W), valid if W is a suitably chosen member 

of the commutator subgroup of the multiplicative group generated by A,,“. 

Remark. The preceding paragraph is expository only. The determinant 

of is simply a mapping from 2 x 2 matrices with elements 

I.inear Algebra and Its Applications 1, 511-536 (1968) 
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from 5, into K,*/K,*’ itself. (The formula Ar,A,, - ,4,,Aar is not funda- 

mental to the existence of this mapping.) We must know, however, that 

such a mapping can be defined. This is surely the case if the matrices 

A,, are all invertible. In the special case considered by Ingraham, the 

restriction to invertible submatrices is put aside as follows. Each A,, is 

replaced bv a matrix B,, T: ill,, - ii1 of the same dimension. Except 

for a finite number of values of A, all B,‘,, are invertible, and the theorem 

is established with B,,,, in place of A,,,. The concluding step of the argument 

(descent from BP, to AI,, b!. setting I = 0) depends on properties of 

polynomials over the various domains that are involved. The validity 

of this step must be investigated for each individual domain &,,, &, &,, If 

all domains are commutative, there is no problem. Otherwise, the invert- 

ibility of all A,,, seems to be an essential hypothesis. 

Proo/. The proof is essentially the same as Ingraham’s, so the latter 

came within an ace of discovering the noncommutative determinant 

function. The formalisms in the proof of Theorems 4.3 and 3.18 explain 

how an inductive proof can be worded. The details are omitted. 

ci.2. COROLLARY. Let ,4 be a matrix of complex numbers: A = [aLj]. 

Set Re a,i = g,], Im a,, = hli; a,, = g,, + h,j ]~~~~i. Replace each entry a,, 

bv the 2 x 2 matrix gij hii 

/ I - h, gr3 ’ 
thus expanding A to a 2n x 2n real matrix 

G. Then ‘det Ai i det G. 

6.3. COROLLARY. Let A be a matrix of quaternions; expand A in 

the same wajj into a 3n x 412 real matrix G. Then ldet AL4 = det G. 

These corollaries indicate (in principle) a method of finding the real 

and imaginary parts of the roots of a complex or quaternion matrix by 

adhering to real arithmetic. 

7. PROPER VALUES 

The study of invariant subspaces and proper values can be carried 

quite far even o\er a noncommutative division ring. 

7.1. DEFINITION. The scalar 1 E 5 is called a (right) proper value 

of the matrix A E 5, if for some nonzero vector x the relation Ax = x2 
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holds. It will appear that there is no distinction between right and left 

proper values. 

Aki n x n matrix may fail to have proper values, or it may have an 

infinite number of them. The product x;l represents the matrix operation 

of multiplying a column by a 1 x 1 matrix. 

7.2. THEOREM. If il is a proper value corresponding to the vector x, 

then p-‘iip is a proPer value corresponding to xp. 

7.3. THEOREM. If x is a proper vector of A then y - Px is a #ro$er 

vector of PAP-‘. 

Proof. (Ax = x2} * Axp = xp(p-lip) ; PA P-ly = ~1, 

7.4. DEFINITION. The division ring 3 has property pv(n) [proper 

values up to n] if every matrix in &, &_i, . . . , iJ has a proper value. 

Clearly 3 has property @v(l) always. 

7.5. THEOREM. If $J has property @v(n), then every matrix A E 5, 

is similar to a triangular matrix B = [bij], i.e., b, = 0 if i > j. 

Proof. The proof goes by induction on n; i.e., we assume the theorem 

to be true for a matrix C E s,_,. It is only necessary to notice that a 

vector can always be bordered to give an invertible matrix. By Theorem 

0 
7.3 we can assume xi # 0, and state that X = 2 I has the inverse 

I 1 

Thus if Ax = xii, then AX = X O’ 
[. 1 c , where w = 

[xl-la,i] ; cli = - z,xl-lali + a+ Here z, = x, c1. The necessary inductive 
step is established. 

Remark. Unitarity need not be defined in 5, so we 

that A can be unitarily transformed to diagonal form. 

7.6. THEOREM. A matrix A E 3, has no more than 

proper values. 

cannot assert 

n (dissimilar) 

Proof. Using Theorem 7.3 and the method of Theorem 7.5, we may 

replace A by the triangular matrix B = XBX-l. We show that the proper 

Linear Algebra and Its Applications 1, 511-536 (1968) 



values of a triangular matrix are its diagonal elements and the numbers 

similar to them. If R.r = .uA and xi -8 0, then 1 = x-ibirx,. If zr --- . . . ~~~ 

x k__, = 0, then i. = x,y lb,,:x,;. 

7.7. THEOREM. Ij v is a nonzevo vector a& Hr = 0 [x*ll 0 

then B is not invertible. 

Proof. If BP1 existed, then IIPIR.x --: .x 1 x*KR-l 1 .Y* would bc O. 

7.X. THEOREM. Ij 2 is a [right; paper value of A, the?t A ~~~ jll has 

zero determinant and coweysel?~. (It is assumed that 3 is a division ring). 

7.9. THEOREM. Every right profier value of A is a left proper va/tAe. 

(It is not necessary to distinguish between right and left proper lralues.) 

7.10. COROLLARY. 7'he proper values of a matrix and those of its 

trans$ose aye the same. 

7.11. THEOREM. Let .+I = dl,J 4, I I 0, AZ2 
have block triangular form ( 

i.e., sybpose AlI, A,, are square. Every proper valve of A,, [A,, 1 is a prober 

value of A. Every pro;her ?Ialue of A is a firofier wlue either of A,, OY of 

A 22’ 

Prooj. If Ax = x1, then A,,z + A,,w = zi, A,,ze~ = z)A, where s ~1 

[z, w]*. If w # 0, 1 is a proper value of A,,; if WI = 0, 1 is a proper valur 

of .4,,. The converse is immediate. 

7.12. THEOREM. If 5 has property Iv(n), then every matrix A E ;5y,1 

is similar to a matrix diag[B1i, B,,, . . , R,,‘, where each matrix B ,,!, is 

triangular with constant diagonal entries. 

Proof. Let A = 
L4,,, c 

I I 0, B’ 
where the proper values of A,, are all 

similar and none of these is a proper value of H. If we can solve the 

equation ,4,,Z ~ ZB .= C, the proof is completed on transforming il b! 
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I Z I 1 0 I’ 
\Ve may assume that A,,, B are triangular. In this case, the 

equations to be solved are 

%lZll + %2%2 + * * * + %,Z,,l - %l~ll = 51 

a22221 + * * * + ~2pzp1 - Zz&, = c21, 

~~,,p2pl - Zlllbll = Cpl, 

together with further equations that concern the later columns of C. 

By a theorem of [al], these ,U equations can be solved for zil, solving the 

last one first. The theorem is proved. 

7.13. COROLLARY. Let A, B be square matrices each of dimension not 

exceeding n and suppose 3 has @o$erty $v(n). Then the matrix equation 

AZ - ZB = C is solvable provided that the proper values of A, B aye 

disjoint. 

Proof. The given equation can be written in the form SA.F1(SZT) + 

(SZT)T-lBT = SCT. Thus we may assume that A, B are in triangular 

form and proceed as in Theorem 7.12. The corollary has the following 

paraphrase: There exists Z such that can be transformed into 

IZ LJ 
block diagonal form by o I 

I 1 

7.14. THEOREM. Let 3 be a division ring. Ezjery matrix A E 3, can be 

transformed (rationally) into almost triangular form (i.e., i > j + 1 5 a+ = 0). 

This theorem is well known to numerical analysts, who use the term 

Hessenberg form. 

Proof. As usual, we use induction on n. Either azl = as1 = - - . = 

%l = 0 or else we arrange by a preliminary permutation that u21 # 0. 

The inductive step is completed by means of elementary transformations, 

the transforming matrices being I + a,‘ajlej2. 

It may occur that a,+l,i = 0 for certain indices. Such an event signals 

decomposition into block triangular form. We study one of the blocks. 
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Thus, we assume (renaming) that .4 is a matrix in almost triangular 

form; v,{a, i ,,‘ f O}; V,,j{(i ::, ,j + 1) m-i n,, =- O}. See Theorem 7.11. 

\\‘e first remark that from As = 2.2 there follows x, + 0. Indeed tlrc, 

relation A .x = x;1 reads: 

n ,,.,?--I XII , - a,,,,x,, = .Y,,l. 

From .Y,, = 0 it would follow that s,,_, = .Y,! 2 = . . . -- x2 = .vl - 0. 

\\‘e try to solve these equations from the bottom upward, taking x,, = 1. 

Ky induction it can be proved that (with x,, = 1) every component .I, 

(i = n -- 1, 12 ~ 2, . .) 2, 1) is a one-sided polynomial in A: .x,, _, =- 

~,;,,f_,;i ~ a;,dp,ann; .Y,_~ = C~=oc,il’. S u s 1 u mg these expressions into b t’t t. 

the first of the equations written out above (in place of Ax = sil) we 

obtain an &h-degree one-sided polynomial equation in jl in which the 

coefficient of x” is nonzero. This proves 

7.15. pI‘~~~~~E~f. The &&ion ring 5 has jwoperty #V(PZ) ii a?ld onl~f 

if every one-sided ~olwzomial equatiogz of degree n with coefficients is ;5 has 

(I mw iw ;U. 

The discussion that led to the above theorem did not rely on th<s 

definition of the determinant function previously given. To connect tlrc, 

two, we can proceed as follows. 

i.lB. ~IsI~rNITIO~. The product of the one-sided polynomials (for 

the various boxes) obtained above is the (strictI!., a) characteristic 

polynomial of A. 

M’e note that if 3 is noncommutative, det(A ~ AI) is not necessaril! 

a polynomial in A. However, we can assert 

7.17. THEOREMS. Suppose every one-sided ~olyaomial of degree n ovey 

;‘v Ians a zero. Then 8 has property jw(n). Moreover det(A - AI) coincides 

iPith the characteristic $olyzonzial of .4 
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Proof. Choose P so that PAP-l is triangular. Then PAP-’ - ?,I 

is also triangular. Also P(A - 2I)P-l = PAP-l - ill. \f?e now appl? 

Theorem 3.8 and Definition 7.16. 

7.18. ~‘HEoRE~I. 7‘he determinant of a matrix is eqzbal to the product 

of its prober zjahes. 

I+oof. This follows from Theorems 7.11, 3.18. 

The fact that det A is defined up to multiplication by an element in the 

commutator group K*’ of K* is in harmony with the fact that a proper 

value is determined only to within conjugacy. 

8. CANONICAL FORM FOR A MATRIX US’DER SIMILARITT TR:\iVSFORMATIONS 

If 3 has property /W(N), in particular if every one-sided polynomial 

equation has a solution in 5, then every matrix A E 5, can be transformed 

into the so-called Jordan canonical form. The usual proofs of this assertion 

assume that 5 is commutative, or that A is the matrix of a semilinear 

transformation (see 1171). In this section, we outline a different proof, 

based on an argument ascribed by Gel’fand to Petrovskii [llj. Sest 

we use the properties of the determinant function to establish uniqueness. 

Since the cases n = 1, 2 are trivial, we consider first the case n = 3 

in detail. (The argument for general n is outlined in [ll].) \\‘e suppose 

A = (aijl13 to be in triangular form, with constant diagonal elements; 

see Theorem 7.12. The only difficult case is al3 # 0. 

Case 1. Suppose first aI3 # 0, az3 == aI2 = 0. Then we need onl!* 

permute 2, 3. 

C’ase 2. Suppose ui3 f 0, aI2 # 0. \\‘e transform .A by I - a,;‘a13ez3. 

Case 3. Suppose aia f 0, aI2 = 0, az3 # 0. We transform by 1 - 
I 

L123a1 :% e21j reducing the problem to the first case. 

Turning now to the cast of general ~2, we note that by induction 

(on n) we may assume that A = 
a b 

L 1 0 J’ 
where J is an n - 1 x $2 - 1 

Jordan canonical form. If (first case) ai2 = 0, a23 = 0, we permute 1, 2. 
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If (second case) an, = 0, u2a = 1, as4 =-= 1, , u, ,,? -= 1, llr I i_ i -= 0, 

we transform by (0-l = 0), (I + ~;;~le~r)(l _I- a,iLe3.$ . . 3 (I + a’;‘e,__,,), 
obtaining 

Then we permute the first Y’ indices cyclicall!.. Finally (third case) if 

ui2 f 0, a long induction is needed, commencing with transformation by. 

n(1 - a,‘~~+~). The details are not elegant enough to Lzm’rant extensi1.c. 

expounding. 

S. 1. Uniqueness of the Jordalz canonical joru~. .ls in the commutative 

case, the number of “Jordan boxes” of each dimension is an invariant. 

These numbers are, howe\rer, related to the elementar!. divisors that 

arise in determinant theor17. 

X.2. LEMMA. If A is au_v “rl x II matvi.r and S is a,z_v matrix, the 

greatest commo9z (pol~nominl) dicisors 01 tlac determinants of the k-rowed 

ntinor matrices of il -- AI afad SAS- 1 - AI (ZYC' the sawt’. 

The meaning of Lemma 8.2 must be esplained; see below. l;rom this 

lemma it follows that the Jordan canonical form is unique. 

Determinants of $ol>~nomial m&ices 

Suppose the elements of a matrix are oricesidcti pol~notnials in a single 

indeterminate A. To define the determinant of sucll a matrix, we invent 

a new object, the class of one-sided polvnomials Lvith coefficients from 

K*/K*‘. The determinant of a polynomial matrix can now be defined 

as a one-sided polynomial with coefficients derived from K*/K*‘, obtained 

by expanding the determinant of the matrix in the usual way. In fact, 

the coefficients may be s20Iz.s of cosets of K*/K*‘. 

8.3. lA~m~a. If ajl is an_v ?? x IL matrix and c! is an elementar?’ 

matrix, the greatest common divisor of the determinants of the k-rowed minor 

matrices of A ~ lI and UA IT-’ ~~ ,?I aye the same fiolynomials. 
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In fact, the minor matrices are themselves the same with only a few 

exceptions. In computing the gcd, constant factors are not involved, 

i.e., a N b [a, b E K*] ; A - a N b(i?. - a). The proof of Lemma 8.3 

depends in an obvious fashion on Lemma 1.2a. 

8.1. THEOREMS. ilside from reordering of the elementary boxes, tzo 

tu,o Jordan matrices are similar. 

This follows from Lemma 8.3 by a familiar argument 171. 

There are further applications of the determinant function; the 

elementary symmetric functions of a transformation of a vector space 

can be generalized to the noncommutative case. 

X.5. DEI;INITIOK. The coefficients of the various powers of 1 in the 

polynomial det(A - 11) are the elementary symmetric functions of the 

matrix il. 

X.6. THEOREM. If 5 has property jw(n), the elementary symmetric 

fwtctions of .4 are the elementary symmetric functions of the proper values 

of A. 

For example, the trace is a collection of cosets, and is certainly a 

subset of the collection 

The algebraic sum of two cosets may include elements from (and therefore 

be equal to the logical sum of) more than one coset. 

X.7. If either A or B is invertible, .4B and BA have the same char- 

acteristic polynomial. 

Prooj. Use Lemma 8.X together with HA = iZ-r(AB).4. 

Actually much more is known. If A is Y x m and B is m x Y, the 

nonzero proper values of AB and BA coincide. This is established by 

the following little-known computation. Assume m > Y. 

5.8. THEOREM. The proper values of BA are the same as those of 

AK, together with m -- r zeros. 
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Proof. We begin with the equations 

By property 1.5, the right members of these relations have the same 

determinant. lising Theorem 3.16, we find ;I:‘” ‘” det(ii’l, ~ .4B) 

I,‘““” det(ii21,,, - BA) ; thus$- ’ det($, ~ AH) -: dct(pl,, - NA), where 

p = 12. This is a relation involving the indeterminate p. Thus RA has 

m - Y more zero proper values than does AB. :\ similar, slightly more 

complicated computation [I, p. 3511 can be used to obtain the known 

relations [lo] among the elementary divisors of ‘413, HA 

0. KRONECKER PRODUCTS 

9.1. DEFINITIOS OF I,, x A, Let A be an II ‘\ 11 matrix. Let I,,, 

be the m x m identity matrix. The object I,, x d is an mn x mn 

partitioned matrix, in which the m x wz boxes arc scalar matrices. The 

(i, i) box is cQ,~, i.e., the HZ x m scalar matris with diagonal element 

a,i (the i, i element of A). 

9.2. DEFINITIOS OF B x I,,. Let C bc an uz x m matrix. The 

object K x I, is an rnlz x mn partitioned matrix in which the n x 71 

boxes are all zero except the diagonal ones, which arc all K: B x I,, 2. 

B @ B 0.e. @ B (n summands). 

9.3. LEMMA. I,fi x A can be transformed into A x I,, by a fiermuta- 

tiorz. 

9.4. LEMMA. det(1, x ii) = (det A)“‘. tlet(H x I,,) = (det B)” 

Proof. Theorem 3.16. 

9.5. Let d be n x n; B, m x m. The object A x B (Kronecker 

product) is defined as (I, x A) * (H x I,), i.e., the matrix product of 

these two mn x mn matrices. 
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9.6. THEOREM (Givens). det(A x B) = (det A)“(det B)“. 

Without using Lemma 9.3, the proof of which is tedious, we can 

arrive at the same result by using the hybrid theorem 6.1 to establish that 

det(1, x -4) = det = (det A)“’ 

This proof seems quite easily comprehended and direct. 

10. ROOT-LOC.%TION THEOREMS 

For matrices of quaternions, it makes sense to speak not only of 

proper values, but also of their absolute values. A good deal of the wide 

literature on root location carries over to this noncommutative domain. 

An overview of some of these theorems is given in [6]. The following 

single example is interesting because it involves the determinant function. 

10.1. THEOREM. Let A = [ai,] be an 

indices i (i = 1, 2, . . , n) be contained in 

Then every proper value of A is contained 

least one of the relations), i = 1, . . . , n, 

n x n matrix; let each of the 

a subset J(i) of these indices. 

in one of the loci (satisfies at 

~ det B 

where B=A-_I; B the matrix on rows {J(i)} and column,s 

is the matrix on rows {J(i)} and columns J(i) with 

i omitted and v a$@ended. The number of loci OY relations is precisely IZ. 

The proof uses exterior algebra, in particular Theorem 5.2. See ,_6! 

for details, and note that 19~ = 1 if q is a commutator of quaternions. 

11. PERJLWENTS 

If 3 is commutative, the permanent of A E 5, is usually defined as the 

multilinear form C alo,lp20C2, . * . anoCnj, the summation being extended over 
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all n! permutations o of the indices. In our view this definition should bt 

vxtcnded to a noncommutative domain by starting with the determinant 

function. as follows. 

11.1. I~EI~ISITIOS. lA,t .-I =-- .tl,,j IX’ Ul 11 II matrix with elements 

in the division ring (?-. If d& .-i can 1x3 written in the form 

where the summation is estc~ntlcd O\W all possible IZ ! permutations of 

the indices, and where w,, is a commutator of the multiplicative group 

of 3, then the sum 2 a, ,,,,) . . f a,,,(,,) ~1~~ is ;t voset in per .-1 Per .-I consist5 

of all cosets that can be reprr3ented in this \\‘;I\.. 

\\‘(a do not pursue this definition \-cry far. :Uthough at first glance the 

function seems to have few propertks, I_. Beasley has obtained some 

results concerning it (unpublished). \\‘v also point out 

‘fhc potpourri of results in this paper indicates the possibility that 

other useful extensions of commutative geometry to the noncommutative 

cxse may be accessible through thv use of the DieudonnC determinant. 

‘lk field of real cluaternions can be vnllled: thcsre is an automorphism 

(*) such that cIc(* =~ ox/? Intricate theorems concerning positi\,e definite> 

hermitian forms (see 18 1) can therefore probably be extended to quaternion 

matrices. (.-l&Ted in ,/woo,~: This has been done by De Pillis and the 

author.) 
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