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The determinant function has been studied for more than 175 years.
Formerly proposed as a tool for solving simultaneous linear equations,
the determinant is now recognized as useless for this practical chore. On
the other hand, the determinant has many useful properties. It appears
in exterior algebra; also as a mapping function from §, to & (where §&
is any field). Interesting inequalities involving the determinant function
exist. The same function can be used to locate proper values of matrices,
i.e., to define regions of exclusion.

Since its definition was published, very little in the way of applications
of the Dieudonné determinant has appeared. In this article we derive
certain properties of the (ordinary) determinant function, and extend
these properties to the Dieudonné determinant, a function defined on
matrices over a skew field (division ring). The properties are extensive
enough to permit new applications. In particular we show how to define
the permanent function of a matrix over a division ring. On the other
hand, the range of applications given here could undoubtedly be extended
still further.

Some of the applications we adduce lead to new results. Others are
recoveries of results that may perhaps have already been discovered in
an even more general context. Nevertheless the interconnections ex-
pounded will be instructive and, we hope, of interest.

* To Alexandre Ostrowski on his 75th birthday.
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512 J. L. BRENNER

1. PRELIMINARIES

In our view, all properties of the determinant function stem from
Lemma 1.2, which states that a matrix 4 € §, can be factored into a
product of elementary matrices.

1.1. DEFINITION. An elementary matrix is a matrix

Tl-f =1+ e or S,;=14(a— 1,
Note that every matrix 7, is invertible, and that S,; is invertible if a
is invertible.
The main stream of our discussion concerns the ring of #-dimensional
matrices over a skew field F.

1.2. LeEmMMA. Every matrix A€, is expressible as a product of
elementary matrices.

The product is of course not uniquely determined; but we shall use
Iemma 1.2 to define the determinant of a matrix.

1.3. DeriNiTioN. A determinant function over the matrices of &,
is a function ““det” from §, into ¥ (see below) with one of the following
properties:

1.4.'[ Jfor every invertible
det (AB) = (det A)(det B) = (det B)(det 4) |4 BEBx
1.5.J for every 4, BeF,
We recognize that the constant functions 1, 0 satisfy these definitions;
these are trivial. The function that is 1 on the invertible matrices and
0 on the singular matrices satisfies property 1.5. It has been discovered
many times, but we consider it also trivial. For the existence of a non-
trivial determinant function, it is necessary that § have more than two
elements.
We first show that properties 1.4 and 1.5 are essentially equivalent.

1.6. THEOREM. Let det be a nontrivial determinant function satisfying
property 1.5. Then det is identically O for any singular matrix.

Linear Algebva and Its Applications 1, 511—536 (1968)



APPLICATIONS OF DIEUDONNE DETERMINANT 513

Proof. 1fQis the zero matrix and 4 is a matrix such that det 4 -+ 0,1,
then det O = (det A)(det O) because 0 = A-0. Therefore det 0 = 0.
Next, note that det 7 = 1 since A = A. Further, the determinant of
a permutation matrix P is not 0, since P” = [ for some m. It is now
easy to see that det diag[1,1,...,1,0,0,...,0] must be 0 if the matrix
is singular; this follows from the fact that O is expressible as the product
of this matrix by some of its permutes. Now, if B is singular, B can be
written as a product CDG, where D is the above matrix. Hence, det B = 0.

We are justified in considering only property 1.4 henceforth, that is,
only the mappings from the general linear group GL(#n, §] into &.

2. THE DETERMINANT OF A 1 X 1 MATRIX

We discuss the possible existence of a nontrivial determinant function
for 1 x 1 matrices, the simplest case. First we note that det 4 is never
0; hence, det1 =1 because det(l-a) = (det 1)(det ). Further, since
det a det(a—1) = det 1, it follows that (det a)~! = det(a~!) and finally
from (det a)(det b) = (det b){det a) it follows that the determinant of any
commutator aba~16-1 is 1. Let K* be the multiplicative group of &;
then det is a mapping from K* into the quotient group K*/K*' of K*
with respect to its commutator subgroup. The kernel of this mapping
is clearly the commutator subgroup K*', and the mapping is completely
defined. As we shall see later, this conclusion, derived in the 1 x 1 case,
can be generalized to GL[», F]. Note that K*/K* ~ C*, the center of
K*. The determinant of an # X n matrix will be defined as an element
of K*/K¥*, ie. as a coset of K* in K*. It will not always be possible
to replace the entire coset by a single representative. When K* is com-
mutative, there is hardly any distinction, since every coset has only one
member.

Let us digress to consider how a determinant function must be defined
overl X 1 matrices when the coefficient domain is a ring but not necessarily
a skew field. First, if the ring has no zero divisors, e.g., if the ring is a
ring of polynomials over a division ring, it can be imbedded in a quotient
field [24]. A self-consistent determinant function is thus immediately
defined. In the general case when zero divisors are present, it may be
useful to define the determinant function only after reducing the ring
modulo its radical (see [17, p. 221]). However, this device is not always
effective.

Linear Algebra and Iis Applications 1, 511—536 (1968)
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Remark. The matrix equation

« O01fs o0 af 0 1

0 a0 g1 [0 ot g
shows the desirability of Definitions 1.4 and 1.5. The product affa—14-1
should probably be indistinguishable from 1;1.e., det Bdet 4 = det A det B.

3. THE DETERMINANT FUNCTION FOR i X # MATRICES
31. Lemma. If n > 2, the matrix T, s a commutator (if 1+ ]).
Is ~ r171 —1 g~ .o g N
Proof. rik7k1'11ik I, =T, (it e =k#7).

3.2. LemMmA. Ijt ¢t — 1 are both invertible, the matrix T, s a com-
mutator.

Proojf.
¢ O]l (¢— 1)~ o1 —¢—0
0 1][0 1 0 1[0 I =l
In particular 77, is a commutator whenever 2 is invertible {{ = — 1).

1
3.3. LEMMA. The maltrix L)

2a| .
) 1S a commutator.

Proof.
—1 ol —al[—1 O]l a] (Ll 2a
o 1/lo 1| o 1o 1] o 1]

IJ is a product of commutators (a £ 0).

LemMma.  The matrix

34. Proof. If a, a — 1 are both invertible, then each factor in the
product is a commutator:

e PR | AP | | O | "

Linear Algebra and Its Applications 1, 311 —0536 (1968)



APPLICATIONS OF DIEUDONNE DETERMINANT 515

3.5. Remark. If § hastwo elements, n = 2, the matrices 1,, T, are
not products of commutators. For the six nonsingular matrices of §, are
I[,A=T, B=1T,, BA=ABAB, AB= BABA, ABA = BAB, and
the commutator subgroup is {I, B4, AB}. But since ¥ has only two
elements, no nontrivial determinant function can exist.

3.6. DEFINITION. Any matrix diagla, 1,1,..., 1], a £ 0, is called
a determining matrix.

3.7. THEOREM. Every tnvertible matrix can be written as the product
of a determining matrix (first factor) times a product of commutators (second
factor).

Proof. The proof bases itself on Lemmas 1.2, 3.1, 3.2, 3.3. Write
the given matrix as a product of elementary matrices, and insert extra
factors, e.g.,

2 P E A B Y R

where T, U are arbitrary products of commutators. Since the commutator
subgroup CGL[n, §] is invariant, the theorem follows.

For a nontrivial map we easily derive det I = 1, (det 4)~! = det 41,
and the determinant of a commutator must be 1. Hence from property
1.5, the determinant of any matrix must be the determinant of its deter-
mining matrix. We define the map of diag(a, 1,..., 1] as the mapping
from K* onto K*/K*' (or by abuse of language, onto C*) which was given
earlier (with kernel K*). This function is the determinant function
defined by Dieudonné. In case ¥ is commutative, it coincides with the
usual determinant function.

In my opinion, the above discussion is more direct than most. It was
given in essentially the same form by Taussky and Wielandt in 1963, in
my lectures in 1955, and perhaps earlier by others.

Some properties of this definition have to be established.

3.8. THEOREM. The “determinant of the determining matrix” is a
determinant function satisfying property 1.5.

Proof. Suppose

a 0O B b O
A=y T =lo 1|V

Livear Algebra and Ifs Applications 1, 511—536 (1968)
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up |2 O[b‘loTbO )
“lo Ijjo 1 o 1)°

has determinant det(ab) = (det 4)(det B). (We have used det,ab to
mean the mapping from K* onto C*, and det,4 to mean the mapping
from GL[#n, & onto C*)

Then

3.9. THEOREM. The determinant of a wmatrix is the same as the
determinant of its transpose.

Proof. The factorization of a matrix into a product of elementary
matrices establishes this. Note that the transpose of a product is the
product of the transposes in reverse order.

3.10. THEOREM. [If one row of a matrix is multiplied by the constant
a, the determinant is multiplied by this same constani.

Proof. The matrix transformation in question amounts to multiplica-
tion of the matrix by an elementary matrix I + (a — l)¢;;, the determinant
of which is a.

3.11. THEOREM. I} two rows of a matvix are interchanged and after-
ward one of these rows is multiplied by — 1, the determinant is unaltered.

Proof. The matrix transformation is brought about by premultiplying

by the matrix
0, 1 VoIjf 1 oojfL ot
—1, o/ {0 1j{—1 1jjo 1

Each of the three displayed factors is a commutator.

3.12. COROLLARY. Interchange of two rows of a matrix changes the
determinant to iis megative.

Here — det, a means det,(— a). Over quaternions, det(— a) and
det a are the same.

Proof. Theorems 3.10 and 3.11.

3.13. THEOREM. If one row of a matrix is augmented by a multiple
of another row, the determinant is unchanged.

Linear Algebra and Its Applications 1, 511—3536 (1968)



APPLICATIONS OF DIEUDONNE DETERMINANT 517

Proof. The transformation amounts to premultiplication by

ol e )

I 0
. . MMAL S — 5
3.14. LemMa. Suppose A [0 B

bordering with an identity matrix. Then det A = det B.

i.e., A is obtained from B by

3.15. DEFINITION. The matrix A = [a;] is a direct sum: 4 =
B ®C, if the indices {1,..., n} can be partitioned into disjoint sets
R, S such that a; = 0ifie Rand je Sand alsoa; = 0ifie RandjeS.
. . . . B 0
The matrix B is B = [aij]i‘jeR; C = [ajl jes A~ [0 C}'

3.16. THEOREM. det B @ C = (det B)(det C)(4 1), where the factor
4 1 indicates the sign of the permutation {1,..., n} —{R, S}.

Proof. Note that B@C = [B®I][I @& C], where the symbol @
denotes direct sum. Express [B @ I] and [I @ C] as products of # X #n
elementary matrices ||.

3.17. DEriNiTION. The matrix A = [a;] is reducible if the indices
{1,..., n} can be partitioned into disjoint sets R, S such that ;= 0 if
te R and j€ 5.

3.18. THEOREM. Let A be reducible; let B, C be defined as tn Lemma
3.14. Then det A = (det B)(det O)(+ 1).

Proof. One first shows that 4 = D[{B @ C], where D is a product
of commutators; Theorem 3.18 then follows from Definition 3.17 and
Theorem 3.8.

4. COMBINATORIAL PROPERTIES OF THE DETERMINANT FUNCTION

In the preceding section the determinant function was defined; certain
properties were shown to be immediate consequences of the definition.
When properly rephrased, any known property of the determinant func-

Linear Algebva and Its Applications 1, 511 —536 (1968)
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tion over commutative domains can be carried over to the noncommutative
case. In this section we study chiefly the generalizations of multilinearity.

It has to be remembered that the determinant of the 1 x 1 matrix
.a] is not a, but is the coset of A* modulo the commutator group A*’
to which a belongs. When only multiplications are being performed,
each coset may be represented by an element of C*, since multiplication
of cosets amounts to multiplication of their representatives. This sim-
plified representation does not work if addition is involved as well as

multiplication.
If one overlooks this fact, one overlooks at the same time the possibility
. . . a b
of expanding the determinant of the matrix 4 = l d (a £ 0). Becausc
C

of the relation

a bl —alh
¢ d]|o | ;

noticed by many ecarly writers, it must be so that

a 0
¢ d— ca b

a
det

&

h
d’ =a{d — ca~'b) = ad — aca'b.
The relation between this number and the number ad - bc is the following.

4.1, LeMMA. There are elements U, V, W from the commutator group
K* of K* such that

ad — Web = det 4,
ad — ¢bU = det A,

ad — bel” == det 4.

Proof. W =aca le™t, U = (cb) ' Web, V=rc YhichU.

This is not an artificiality. We must think not det A == ad — b,
but rather det A = a-detd - b - detc; and detd, det ¢ are determined
only up to a factor from the commutator group K*'. (In the commutative
case, K*' is trivial.) Before establishing the noncommutative form of
the multilinearity property, we interpose a short digression.

Lincar Algebra and Its Applications 1, 511 —-536 (1Y68)



APPLICATIONS OF DIEUDONNE DETERMINANT 519

4.2, LemMma. The following properties of the determinant function are
equivalent:
(a) Whenever the first row of matrix A is the sum of two rows ry + 7,,

rl+72-
A=1 ... |,

then det A = det A, + det A,, where A, is the same as A except in the
first row, where r; replaces r; + 7,.
(b) Whenever the first column of A is the vector [1, —1,0,...,0]*,
the determinant of A can be found by expanding by minors of the first column.
(c) The determinant of every matrix can be found by expanding by
MINOTS.

Proof. Toshow parts (a) and (b) are equivalent, consider the bordered
matrix

61

—1 7
0
0

and expand it in two ways: first, by minors of the first column; second,
by adding the first row to the second row and using Theorem 3.18.

To show that parts (a) and {c) are equivalent, note that part (c)
amounts to applying (a) inductively, by considering the pivot row as
the sum of n rows, viz,

lo, 8,7, ... ] =12,0,...,0] +[0,8,0,...;+0,0,p,... ]+

4.3. THEOREM. The determinant of an n X n wmatrix can be found
by expanding by manors of any one row or column.

Proof. The inductive proof assumes that parts (a) and (c) of Lemma
4.2 are valid for matrices of order less than », and also that Theorem 4.3
is valid for any matrix having £ — 1 or fewer nonzero elements in the
pivot row. The induction must then be carried to an » X » matrix with

Linear Algebra and Its Applications 1, 511-—536 (1968)
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exactly £ nonzero elements in one row. To make the exposition readable,
we simply expound the proof for the 3 x 3 case:

—1 o -
1 0 — an a3 Ay 49, U
N 1 )
A4 = {a;},3, A0 1 0 = | Gy dyy, Ag3 — dgydn1 Gy3 | = A,
) 1 ™
0 ¢ , L“31 Agg, 33 — A1 dyg

Since det 4 = det A,, the induction hvpothesis implies that
44.

-1 -1
Aga  Ggg — Apd11 943 Ay Aoy — Agydn 443
det 4 = ay; det — ayydet

-1 -1
A3p Qg3 — Q31011 g3 31 Q33 — Az411 A3

The usual theorems are valid for matrices of lower order by the induc-
tion hypothesis. Thus

1
Agg Aoz — dg1d11 dy3 Aoy dog
ay, det . = a,;det
A3y A3z — dg1d11 943 A3y dgg
. Qg Qg
+ apy det(a;n  aq5) det
a3 A3
where we used
1
Agg  A91d11 dy3 Agy g | |1 Y
— 0 o
dza  dndnthy | 332 Gn | |V 14y

The proof of Theorem 4.3 may now be completed by treating the last
term of the equation 4.4 in similar fashion. The proof for matrices of
arbitrary dimension is the same, with the necessary tedious generality
of notation.

Remark. Theorem 4.3, stated in the form (a) of Lemma 4.2, was
discovered by W. Givens [12!]. His proof seems not to have been published.

Remark. It is now clear that assertions (a), (b), {¢) under Lemma
4.2 are not only equivalent, but are in fact universally valid.

Lanear Algebva and Iis Applications [, 511—536 (1968)
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4.5. THEOREM (Laplace expansion). The generalized expansion

1---7 ( r+1---m
detA:EidetA(kl._.k’)detA ;{1,...,n}\{k1-~k,})

is valid.

Here, the notation 4 (## %) denotes the minor based on rows ... and
columns ***; the set {1,..., #}\{k ' %} is the set {1,..., n} with
the element &, ..., &, deleted; and the summation is extended over
all subsets {&, ..., &} of r indices from the set {I,...,n}. The proof
1s again by induction.

4.6. THEOREM (Cramer’s rule). The solution of the linear system
Ax = b satisfies the usual rules; instead of x = A~1b, however, we must
write (det x;) = det(4A18),

. Conditions jor solvability, number of linearly

independent solutions, etc. remain the usual ones, it being understood that
“solution’” means “‘solution coset.”

Remark. In a field with valuation, the relation x = 415 can almost
be achieved; in fact ||x,]} = |/(4~1b),]|. The value of a commutator is 1.

5. COMPOUND MATRICES

The compound of a matrix can be defined in the usual way. The
elements of the compound are themselves cosets of K*'. Note that
a matrix and its first compound are not identical; for matrices over a
commutative field, there is no need to distinguish between them.

5.1. DEFINITION. Let A4 = [a;] be an n X m matrix. The rth

compound A(r) of A (1 < r < min(n, m)) is the (n) X (T) matrix, the
7

elements of which are the determinants of the various » X # minor matrices

of A, written in lexicographic order by rows and columns.

5.2. THEOREM. Ij A, B are any matrices (for which AB is defined),
then AVB" — (AB)™.

The assertion is less precise in the noncommutative case than in the
commutative case; the idea is that a purported relation such as cd +

Linear Algebva and Its Applications 1, 511—536 (1968)
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ef + - -+ = gk holds if each letter is a suitable representative of its coset.
In the commutative case, each coset has onlv one representative.

Proof. By Lemma 1.2, it is sufficient to establish Theorem 5.2 in
the special case that B is an elementary matrix. For if B is merely the
product B;B, of two elementary matrices, then

(A B)“) — (A Bl)(r)Bz(r) — AH)Bl(f)Bz(f) — A(H(BIBZ)(') = AU

The formal inductive proof assumes Theorem 5.2 to be valid whenever
B is the product of ¢ —- 1 elementary matrices, and on the basis of this
assumption, establishes the theorem when B is the product of 7 elementarv
matrices.

Theorem 5.2 is obvious when B is an clementary matrix Ty, see

property (a) under Lemma 4.2. If B is S,;, Theorem 5.2 is also obvious;

see Theorem 3.10.

a0

Remark. The above proof seems to be different from the proofs
usually given, even in the commutative case.

5.3. LeEMMA. Set A =T, i+ ] Then detA =1, det 4V = 1.

Proof. From the definition of A" it is obvious that 4" is upper
triangular and has diagonal entries all equal to 1.
5.4. COROLLARY. SetA =1 4 ae;,i# . Thendet A =1,det A" =1.

i
The above proof applies.

55. Lemma. Let A = S,,, the diagonal matrix of order n with a

@i

. — 1
in the (i, 1) position. Then det A" = a, raised to power <1rl 1).

Proof. All nonprincipal minors of 4 have a row (or a column) of
zeros. Everv principal minor is either the identity matrix, or else has

. —1
a as one diagonal entrv. The number of the latter is (n 1).
r —

— 1
5.6. THEOREM. det A" — (det A), raised to power (:1 ])-

Linear Algebra and Its Applications 1, 511—536 (1968)
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Proof. Lemma 1.2, Theorem 5.2, Lemmas 5.3, 5.5.

Svlvester’s determinant theorem. A theorem of Sylvester gives the
values of certain principal minors of A4”; we write 4 = la;1,";
A, = det{a;],", where s is fixed, 1 <<s <7

5.7. THEOREM. Let B be the matrix, the elements of which consist

of the determinants of all those r X r minors of A that involve the first s

rows, the first s columns, {and v — s other rows, v — s other columns);

elements of B are arranged according to the lexicographic order of these
minors. Then det B = (det A)*(det A4,)", where

n—s—1 l---s n—sél)

oL:<r—sl>’ Al:A(l---s)’ /3:( r—s ’

7

The proof is essentially that in [22].

6. HYBRID THEOREMS

One of the early hybrid theorems is due to Ingraham. The theorem
concerns an #r X mr matrix A = [a.];" that is partitioned into blocks
[4,,1," of equal size: 4, = [a;], (0 — D)y <t < pr, (v — Dr <j <.
Ingraham proved the theorem under the double assumption that all
submatrices 4, are commutative, and that the field of coefficients is
also commutative. See [16]. Theorem 6.1 includes Ingraham’s theorem

as a special case.

6.1. THEOREM. Let A = [a;],"" be partitioned into n® equally sized
(r X 7) blocks [A,,],". Then det,, A = det,(det, 4).

The theorem says, for example, that
Ay Ap
deta, [Am A, = det, (A3 g — Agpdn);

but if 4, are not mutually commutative, this must be modified to read
dety, A = det, (4,495 — A4 W), valid if W is a suitably chosen member
of the commutator subgroup of the multiplicative group generated by 4,

Remark. The preceding paragraph is expository only. The determinant
[A 1 A 12
of

4 ] is simply a mapping from 2 X 2 matrices with elements
21 ‘ez

Linear Algebra and Its Applications 1, 511 —536 (1968)
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from &, into K */K *' itself. (The formula 4,44y — 4,344 1s not funda-
mental to the existence of this mapping.) We must know, however, that
such a mapping can be defined. This is surely the case if the matrices
4, are all invertible. In the special case considered by Ingraham, the
restriction to invertible submatrices is put aside as follows. Each 4, is
replaced by a matrix B,, = 4,, — Al of the same dimension. Except
for a finite number of values of 4, all B,, are invertible, and the theorem
is established with B, in place of 4 . The concluding step of the argument
(descent from B, to 4, by setting 4 = 0) depends on properties of
polynomials over the various domains that are involved. The validity
of this step must be investigated for each individual domain §,,, &,, &,. If
all domains are commutative, there is no problem. Otherwise, the invert-
ibility of all 4,, seems to be an essential hypothesis.

Proof. The proof is essentially the same as Ingraham’s, so the latter
came within an ace of discovering the noncommutative determinant
ion. The formalisms in the proof of Theor 43 and 3.18 ex

o1 nlain
LT prouvl Ul 10ky Teims 4.0 ana o CAapiaiil

an be worded. The details are omitted.

—
vl

how an inductive proo

6.2. COROLLARY. Let A be a matrix of complex numbers: A = [a;].
Set Re a; = Im a; = h;; a;=g;+ h; V— 1. Replace each entry a;;

01]’
' 1

bv the 2 X 2 matrx J thus expanding A o a 2n X Zn real matrix
o.
S5

\-' (7Q

G. Then ‘det A2 = det (

6.3. COROLLARY. Let A be a matrix of quaternions; expand A in
the same wav into a 4n X 4n real matrix G. Then |det A4 = det G.

These corollaries indicate (in principle} a method of finding the real
and imaginary parts of the roots of a complex or quaternion matrix by
adhering to real arithmetic.

7. PROPER VALUES

The study of invariant subspaces and proper values can be carried
quite far even over a noncommutative division ring.

7.1. DerINITION. The scalar A€ § is called a (right) proper value
of the matrix 4 € g, if for some nonzero vector x the relation 4x = x4

Linear Algebva and Its Applications 1, 511536 (1968)
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holds. It will appear that there is no distinction between right and left
proper values.

An »# X #» matrix may fail to have proper values, or it may have an
infinite number of them. The product x4 represents the matrix operation
of multiplying a column bv a 1 X 1 matrix.

7.2. THEOREM. If A is a proper value corresponding to the vector x,
then p~1Ap is a proper value corresponding to xp.

7.3. THEOREM. If x is a proper vector of A then v = Px is a proper
vector of PAP~L

Proof. {Ax = xA} = Axp= xp(p~tAp); PAP 'y =yi
7.4. DEFINITION. The division ring § has property pv(n) [proper
values up to #] if every matrix in §,, &,_,, ..., & has a proper value.

Clearly & has property pu(l) always.

7.5. THEOREM. I} § has property puv(n), then every matrix A€,
is similar to a triangular matrix B = (b;], i.e., b; =0 1f 1 >7.

Proof. The proof goes by induction on #; i.e., we assume the theorem

to be true for a matrix Ce &,_,. It is only necessary to notice that a
vector can always be bordered to give an invertible matrix. By Theorem
0 .

7.3 we can assume x; 7* 0, and state that X = M1 I} has the inverse
-1 q]. A

[ M1 ) } Thus if Ax = xA, then AX:X[ ’ w]’ where w =
—zx,7L, T 0,

(%7 Yay]; ¢; = — z%7'ay; + a,;. Herez; = x; .. The necessary inductive

step is established.

Remark. Unitarity need not be defined in §, so we cannot assert
that A can be unitarily transformed to diagonal form.

7.6. THEOREM. A matrix A€, has no more than n (disstmilar)
proper values.

Proof. Using Theorem 7.3 and the method of Theorem 7.5, we may
replace A by the triangular matrix B = XBX~1. We show that the proper

Linear Algebra and Its Applications 1, 511—536 (1968)
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values of a triangular matrix are its diagonal elements and the numbers
similar to them. If Bx = xdand x, # 0, then A = ¥y oy If oy = e —
%, =0, then 2 = v, %,,.x,.

7.7. THEOREM. If v is a nonzero wvector and By =0 [x*[ =- 0
then B 1s not invertible.

Proof. If B~! existed, then B~1Bx -- x [x*BB~1 = v*! would he 0.

7.8. THEOREM. If Ads a |right! proper value of A, then A — Al has
zero determinant and conversely. (It is assumed that ¥ is a division ring).

Proof. {Ay = x4} = {Ax = (Al)x} = {(4 — Al)x — 0L,

7.9. THEOREM. Every right proper value of A is a left proper value.
(It is not necessary to distinguish between right and left proper values.)

7.10. CoROLLARY. The proper values of a matrix and those of its
transpose are the same.

A Ay
7.11. THEOREM. Let 4 = [ Olp 12J have block triangular form,
s 22

te., suppose Ay, Ay are square. Every proper value of Ay, [Ay| is a proper
value of A. FEvery proper value of A is a proper value etther of A, or of

Ay

Proof. 1If Ax = x4, then A1z + Aw = 24, Ay = wl, where v ==
[z, w]*. If w =~ 0, Ais a proper value of 4,,; if w = 0, 41is a proper value
of Ay. The converse is immediate.

7.12. THEOREM. If & has property pu(n), then every matrix A €,
is similar to a matrix diag[Byy, By, ..., B,,', where each matrix B,, is
triangular with comstant diagonal entries.

44,
0,
similar and none of these is a proper value of B. If we can solve the

C ;
Proof. Let 4 = [ BJ’ where the proper values of 4,, are all

equation A, Z — ZB = C, the proof is completed on transforming 4 by
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[é i} We may assume that 4., B are triangular. In this case, the

equations to be solved are
aply + apgye + 0+ Az, — by = o,

AgoZgy + ** Aoy — 2yb11 = Cay,

a,uyz,ul - zulbll = C,ul’

together with further equations that concern the later columns of C.
By a theorem of [21], these u equations can be solved for z;;, solving the
last one first. The theorem is proved.

7.13. CoROLLARY. Let A, B be square matrices each of dimension not
exceeding n and suppose § has property pu(n). Then the matrix equation
AZ — ZB = C is solvable provided that the proper values of A, B ave
disjoint.

Proof. The given equation can be written in the form SAS—Y(SZT) +
(SZT)TBT = SCT. Thus we may assume that 4, B are in triangular
form and proceed as in Theorem 7.12. The corollary has the following

A
paraphrase: There exists Z such that [ 0 g] can be transformed into
1 z
0 I

7.14. THEOREM. Let & be a division ring. Every matrix A € §, can be
transformed (rationally) into almost triangular form (i.e.,i>7+ 1= a,;=0).

block diagonal form by

This theorem is well known to numerical analysts, who use the term
Hessenberg form.

Proof. As usual, we use induction on n. Either a, = a5, =+ =
a,, = 0 or else we arrange by a preliminary permutation that ay # 0.
The inductive step is completed by means of elementary transformations,
the transforming matrices being I + az_llajlejz.

It may occur that a,,, ; = 0 for certain indices. Such an event signals
decomposition into block triangular form. We study one of the blocks.

Linear Algebra and Its Applications 1, 511—536 (1968)



528 ]. I.. BRENNER

Thus, we assume (renaming) that 4 is a matrix in almost triangular
form; Vi{a, ,, #0}; V,{(0>7+1)= a; =0} See Theorem 7.11.

We first remark that from Ax = x4 there follows x, == 0. Indeed the
relation 4 x == x4 reads:

A%y b Xy 0 A%, = A,
g %)+ ggy + 0 - @y, X, = Yol
YR IR I c—
AgpXy + A Xy = '\3}"
[l:z,»1~]xn~1 T Ay T X”}..
From x, = 0 it would follow that v, |, = x, , =+ = 1, = 1, — 0.

We try to solve these equations from the bottom upward, taking x, = 1.
By induction it can be proved that (with x, = 1)

f=n-—-1Ln—2,...,21) is a onesided polynomial in A: x, |, =
-1 - . _ i i Q . - , o .
Aoy A — @yl Y,y = D5 oA Substituting these expressions into

the first of the equations written out above (in place of Ax = x4) we
obtain an nth-degree one-sided polynomial equation in A in which the
coefficient of A" is nonzero. This proves

7.15. THEOREM. The division ring & has property pv(n) if and only
if every one-sided polvnomial equation of degree n with coefficients in 5 has
a zero in F.

The discussion that led to the above theorem did not rely on the
definition of the determinant function previously given. To connect the
two, we can proceed as follows.

7.16. DrriNtTiOX. The product of the one-sided polynomials (for
the various boxes) obtained above is the (strictlv, a) characteristic
polynomial of A.

We note that if § is noncommutative, det(4 — 4I) is not necessarily
a polvnomial in 4. However, we can assert

7.17. THEOREM. Suppose cverv one-sided polynomial of degree n over
¥ has a zero. Then § has property puv(n). Moreover det(A — AI) coincides
with the characteristic polynomial of A.

Linear Algebva and Its Applications 1, 511 —536 (1968)



APPLICATIONS OF DIEUDONNE DETERMINANT 529

Proof. Choose P so that PAP-!is triangular. Then PAP~! — I
is also triangular. Also P(4 — AI)P~1 = PAP~' — AI. We now apply
Theorem 3.8 and Definition 7.16.

7.18. THEOREM. The determinant of a matrix is equal to the prodict
of its proper values.

Proof. This follows from Theorems 7.11, 3.18.

The fact that det A is defined up to multiplication by an element in the
commutator group K*' of K* is in harmony with the fact that a proper
value is determined only to within conjugacy.

8. CANONICAL FORM FOR A MATRIX UNDER SIMILARITY TRANSFORMATIONS

If § has property pv(n), in particular if every one-sided polynomial
equation has a solution in &, then every matrix 4 € §, can be transformed
into the so-called Jordan canonical form. The usual proofs of this assertion
assume that §¥ is commutative, or that A is the matrix of a semilinear
transformation (see [17]). In this section, we outline a different proof,
based on an argument ascribed by Gel'fand to Petrovskii [11]. Next
we use the properties of the determinant function to establish uniqueness.

Since the cases n = 1, 2 are trivial, we consider first the case n = 3
in detail. ({The argument for general # is outlined in [11].) We suppose
A = [a;);® to be in triangular form, with constant diagonal elements;
see Theorem 7.12. The only difficult case is a;3 # 0.

Case 1. Suppose first a;53 7% 0, agq == a3, = 0. Then we need only
permute 2, 3.

Case 2. Suppose ag3 # 0, ay, # 0. We transform A by I — ap;'a4e5,.

Case 3. Suppose a;3 7% 0, a3 = 0, 293 7 0. We transform by I —
dg3d,3'€yy, Teducing the problem to the first case.
Turning now to the case of general n, we note that by induction
a b .
(on n) we may assume that 4 = [O ]], where Jisann —1 X n —1
Jordan canonical form. If (first case) a;, = 0, 253 = 0, we permute 1, 2.
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If (second case) aj, = 0, ag3 =1, a5, = 1,..., a ., =1, a,, =0,
we transform by (071 = 0), (I + aj;'ey)(I + aji'eg) - - (I + aj)le, ),
obtaining

a, 0 v 0 Aiy

a 1

_ J

Then we permute the first # indices cyclically. Finally (third case) if

a,, # 0, a long induction is needed, commencing with transformation by
[Iua— “1—21“,}627‘)- The details are not elegant enough to warrant extensive
expounding.

8.1.  Uniqueness of the Jordan canonical jorm. Asin the commutative
case, the number of *“Jordan boxes” of each dimension is an invariant.
These numbers are, however, related to the elementary divisors that
arise in determinant theory.

8.2, LEMMA. If A is any n X n wmatrix and S is any matrix, the
greatest common (polynomial) divisors of the determinants of the k-rowed
minor matrices of A — A and SAS—' — AI arc the same.

The meaning of Lemma 8.2 must be explained; see below. From this
lemma it follows that the Jordan canonical form is unique.

Determinants of polynomial matrices

Suppose the elements of a matrix are one-sided polvnomials in a single
indeterminate 2. To define the determinant of such a matrix, we invent
a new object, the class of one-sided polvnomials with coefficients from
K*/K*. The determinant of a polynomial matrix can now be defined
as a one-sided polynomial with coefficients derived from K*/K*' | obtained
by expanding the determinant of the matrix in the usual wav. In fact,
the coefficients may be sums of cosets of K*/K*'.

83. LEmmA. If A 2s any n X n wmatrix and U is an elementary
matrix, the greatest common divisor of the determinants of the k-rowed minor
matrices of A — A and UAU-Y — AI arve the same polynomials.
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In fact, the minor matrices are themselves the same with only a few
exceptions. In computing the ged, constant factors are not involved,
ie, a~bla, be K*; A—a~bA—a). The proof of Lemma 8.3
depends in an obvious fashion on Lemma 4.2a.

8.4. THEOREM. Aside from rveordering of the elementary boxes, no
two Jordan matrices are similar.

This follows from Lemma 8.3 by a familiar argument [7].

There are further applications of the determinant function; the
elementary symmetric functions of a transformation of a vector space
can be generalized to the noncommutative case.

8.5. DerINITION. The coetficients of the various powers of 4 in the
polynomial det(4 — I} are the elementary symmetric functions of the
matrix 4.

8.6. THEOREM. I} & has property puv(n), the elementary symmetric
functions of A are the elementary symmetric functions of the proper values
of A.

For example, the trace is a collection of cosets, and is certainly a
subset of the collection

{ull} + {u22} + e + {a;m}'

The algebraic sum of two cosets may include elements from (and therefore
be equal to the logical sum of) more than one coset.

8.7. If either A or B is invertible, 4 B and BA have the same char-
acteristic polynomial.

Proof. Use Lemma 8.2 together with B4 = A-1(AB)A4.

Actually much more 1s known. If 4 is » X m and B is m X 7, the
nonzero proper values of AB and BA coincide. This is established by
the following little-known computation. Assume m > 7.

8.8. THEOREM. The proper values of BA are the same as those of
AB, together with m — r zeros.
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Proof. We begin with the equations

A O][Al Bl[AM —B
— A M||4 Mo M|

M —Bl[Al Bl AL 0
0 AL ||A M||—A4 M|
By property 1.5, the right members of these relations have the same
determinant. Using Theorem 3.16, we find A*" "7 det(A%], — AB) =

AV det(A2, — BA); thusp™ " det(ul, — AB) = det(ul,, — BA), where
w = A% This is a relation involving the indeterminate u. Thus BA has

0 A3, — 4B

A3, 0 l

MBI, — ABA 0
0 37

m — » more zero proper values than does 4B. A similar, slightly more
complicated computation [1, p. 371] can be used to obtain the known
relations [10] among the elementary divisors of AB, BA.

9. KRONECKER PRODUCTS

9.1. DeriniTiON OF I, x A. Let 4 be an # x n matrix. Let [,
be the m x m identity matrix. The object I, x A is an mn X mn
partitioned matrix, in which the #m X s boxes are scalar matrices. The
{¢,7) box is ai]»lm, ie., the m x m scalar matrix with diagonal element

a,; (the 7,j element of A).

9.2, DerFiNiTION OF B X I,. Let B be an m X m matrix. The
object B x I, is an mn X mn partitioned matrix in which the # x n
boxes are all zero except the diagonal ones, which are all B: B x I, ==
B®B®---@® B (n summands).

9.3. LemMmA. [, X A can be transformed into A X I, by a permuta-
tion.

94, Lemma. det(, x d) = (det A)”. det(B x 1,) = (det B)".
Proof. Theorem 3.16.
9.5. Let 4 be n x n; B,m x m. The object A x B (Kronecker

product) is defined as (I, x 4)- (B x I,), i.e.,, the matrix product of
these two mn X mn matrices.
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9.6. THEOREM (Givens). det(4 x B) = (det 4)"(det B)".

Without using Lemma 9.3, the proof of which is tedious, we can
arrive at the same result by using the hybrid theorem 6.1 to establish that

det 4
det A
d t Im AA=d — Ayn.
et(l, x A) et det A (det A)

This proof seems quite easily comprehended and direct.
10. ROOT-LOCATION THEOREMS

For matrices of quaternions, it makes sense to speak not only of
proper values, but also of their absolute values. A good deal of the wide

literature on root location carries over to this noncommutative domain.
f some of these theorems is given in [6]. The following

single example is interesting because 1

A A
ALl OVerview o
e

—~

involves the determinant function.

10.1. THEOREM. Let A = |a;] be an n X n matrix; let each of the
tndices © (= 1,2,...,n) be contatned 1n a subset J(i} of these indices.
Then every proper value of A is contained in one of the loci (satisfies at
least one of the relations), 1 =1,...,n,

](i)> |
J0) <2, B <J<

] det B( J )
| v g J (1) :

1)\, ¥
where B —= A4 — Al; B(](z;) is the matrix on rows {J(i)} and columns

J@
{J@)}; B <](1])(\t\)t v) is the matrix on rows {J(i)} and columns J (i) with

1 omitted and v appended. The number of loct or relations is preciselv n.

The proof uses exterior algebra, in particular Theorem 5.2. See ;6!
for details, and note that |g| = 1 if ¢ is a commutator of quaternions.

11. PERMANENTS

If § is commutative, the permanent of 4 € ¥, is usually defined as the
multilinear form @151)20(2) " * Bnomy, the summation being extended over

Linear Algebra and lis Applications 1, 511 —536 (1968)



o34 b Lo BRENNER
all #! permutations ¢ of the indices. In our view this definition should be
extended to a noncommutative domain by starting with the determinant
function, as follows.

11.1. DeriNition. Let 4 == (a;| be an # < n matrix with elements
in the division ring §. If det 4 can be written in the form

det 4 = D( = 1ay, - a w

“non "

where the summation is extended over all posstble n! permutations of
the indices, and where w, is a commutator of the multiplicative group
of & then the sum D a4,

of all

w_1s a coset in per 4. Per 4 consists

‘acete the
“0s€els I

We do not pursue this definition verv far. Although at first glance the
function seems to have few propertics, L. Beasley has obtained some
results concerning it (unpublished). We also point out

11.2. THEOREM. The permanent of a matrix mayv be evaluated by

expanding by minors in the wav usual Jor permanents.
12, FURTHER QUESTIONS

The potpourri of results in this paper indicates the possibility that

P =Y I
QLLIICT UuUsciu

1 P R LT antmater
1

I extensions of commutative geometry to
case mav be accessible through the use of the Dieudonné determinant.
The field of real quaternions can be valued: there 1s an automorphism
(*) such that ea* = |2|2. Intricate theorems concerning positive definite
hermitian forms (see [8}) can therefore probably be extended to quaternion
matrices. (Added in proof: This has been done by De Pillis and the

author.)
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